【小哈划重点:光学行业下游主要包括手机、车载及监控等领域。由于手机年出货量在13亿左右,叠加多摄渗透率的提升,手机镜头在下游占比较高。后续随着汽车ADAS渗透率提升推动车载镜头量价齐升,汽车镜头占比有望持续提升......密歇根大学交通研究所曾分析了2013-2017年370万辆汽车的行驶状况,发现L1和L2级别的自动驾驶系统可显著降低交通事故的发生概率。】
一、消费电子光学,量价齐升
2000年第一台带摄像头的手机夏普J-SH04问世,随之而来的是第一台带有前置摄像头的摩托罗拉C975;2011年2月LG P925的发布,是全球首款支持双摄像头的手机。2018年华为P20开启后置双摄时代,2019年华为P30更是创举性的使用后置四摄,20年的新品P40 Pro更是将后置摄像头升级为5颗,多摄化进程进一步加速。
▲从苹果和安卓(华为)智能手机更新换代看摄像头发展史
手机摄像头向着多摄化方向发展并不是偶然的,它有着其内在逻辑。由于尺寸的限制,手机中的单个摄像头必然无法与专业摄影设备竞争。而引入多摄后,各个摄像头分工合作,在算法软件的配合下,具有主摄+广角+长焦+虚化等优势,目前已成为安卓系手机的主要配置。在不同的镜头组合下,多摄模组具有光学变焦、背景虚化、暗光拍摄等优势,极大提升了拍摄效果。
▲多摄化已成现阶段主流方案
2019年全球智能手机摄像头总数达到44亿颗,平均每部手机搭载摄像头颗数达3.21颗,三摄市场渗透率迅猛提升。目前三星三摄及以上手机渗透率最高,达到27%,华为则以23%位居第二。手机摄像头个数增多,逐步推动了“广角”、“长焦”、“微距”和“虚化”等3D成像质量的提升,同时促进摄视觉解决方案市场规模稳步增长。
▲全球智能手机单部搭载摄像头数量
除了多摄,光学镜头高像素化仍然是大势所向。像素作为消费者最关注的参数之一,已经从手机搭载摄像头伊始的11万像素,迅速发展至千万像素摄像头成为主流。2018年12月,华为发布首款4800万像素主摄手机Nova 4,至19年,40/48MP摄像头已成为手机市场主流。小米于19年11月发布的CC9 pro中首次搭载1亿像素后置主摄,开启108MP后摄时代。
▲主流手机品牌旗舰机型主摄像头像素(MP)
手机镜头过去都采用纯塑胶镜片,随着像素提升带动的镜头升级,相机使用的塑胶镜片数量持续增加。现阶段手机镜头已有5片、6片向7片、8片方向升级,镜片数的提升,无疑会带来整机厚度的增加,并且随手机摄像头像素升级、光圈变大,塑料镜头在成像清晰度、失真率等光学性能方面遇到瓶颈。手机镜头在6镜片以后,开始出现玻塑混合镜头的方案,1片玻璃镜头加5片塑料镜头或者2片玻璃镜片加3片塑料镜片能够实现7片镜头功能。
▲波塑混合镜头结构示意图
玻塑混合镜头优点众多,或成未来主流镜头方案。当前玻璃镜片的生产工艺主要包括模造玻璃、WLO和WLG,其中模造玻璃以其工艺成熟、成本较低的优点,已经实现量产。玻塑混合镜头以玻璃镜片替代部分塑料镜片,由于玻璃镜片相较塑料镜片透光率更强、进光亮更大,能够提升成像质量,减少镜片数量而降低镜头厚度。自2017年LG采用玻塑混合镜头以来,玻璃镜片加工工艺的逐渐成熟、成本降低,现在已开始在手机终端规模化应用。
▲不同镜头工艺区别
镜头升级多元化发展,大光圈、超广角也成为新趋势。光圈是一个用来控制光线透过镜头,进入机身内感光面光量的装置,通常而言光圈的大小是由镜头孔径和焦距决定的。当光线通过镜片之后,再经由光圈照射到CMOS感光元件上。
大光圈能够实现背景虚化,同时提升快门速度有效防抖以捕捉动态画面。镜头的光圈越大,单位时间内通过这个光圈的进光量就越多,感光元件获得的信息也就越丰富,最后照片的效果越好。光圈变大会导致光线在折射过程中色差、色散增加,对镜头厂商的光学设计能力(校正像差)和装配调试能力(确保同轴组立精确度)也提出了更高的要求。
很多厂商在宣传一款手机的拍照性能时,往往会强调它的摄像头像素、光圈等参数,例如iPhone 12 Pro就将配备F/1.6的大光圈摄像头。
超广角镜头有着宽广的视野,又不像鱼眼镜头有强烈的畸变,是很好消除了畸变的镜头。超广角镜头具有拍摄画面空间纵深感强、景深较长、拍摄景物范围广的特点。广角镜头的设计难度在于画面边缘会受镜片折射影响产生畸变,因此需要更为精细的镜片组合优化光学设计、采用高质量的光学镜片、通过后期算法对镜片成像效果进行处理,来达到更好的广角效果。
单反相机可以通过不同焦距的镜头来实现变焦,但手机摄像头无法更换镜头,多摄的渗透让手机拥有了多焦段拍摄的能力。长焦镜头能够在不损失画质的前提下更为真实地呈现远景。
▲大光圈、超广角已成为各品牌高端机型主流方案
手机镜头中除了镜片外,另外一个重要的组成部分是图像传感器。图像传感器主要历经摄像管、光电二极管阵列、CCD、CIS四个发展阶段。
(1)摄像管:1933年,V.K.兹沃雷金发明了光电摄像管,可看作第一个图像传感器,此后相继出现超正析像管、光导摄像管、硒砷碲摄像管等类型。
(2)光电二极管阵列:1967年,第一颗以光电二极管为阵列、基于MOS管的图像传感器诞生,这是现代CIS最早的原型。
(3)CCD:1969年,贝尔实验室发明了CCD;1982年,出现了使用CCD的相机产品;CCD在近20年里作为主流图像传感器应用。
(4)CIS:1993年,JPL发表CMOS有源像素传感器;1995年,Photobit首次将CIS技术商业化;2005年后,CIS取代CCD成为主流。
CIS凭借体积小、成本低、功耗低、集成度高等优点,成为当前主流传感器。由于工艺原因,CCD无法将敏感元件和信号处理电路集成到同一芯片上,因而会有体积大、功耗大的问题。早期的CIS与CCD相比差距很大,但随着工艺的进步,CIS性能有了质的飞跃。CIS适用范围更广泛,目前已在消费电子领域完成对CCD的替代,而CCD仅在卫星、医疗等专业领域继续使用。
CIS市场迅速复苏,疫情不改长期成长趋势。据IC Insights预测,CIS芯片全球市场规模将在受疫情影响而短暂下滑后持续增长,预计2024年销售额达到261亿美元,2019-2024年CAGR达7.2%;2024年销量达到110亿颗,2019-2024年CAGR达11.5%。
▲2009-2024年全球CIS销售额及销量情况(含预测)
据中国产业信息网统计,2018年用于手机的CIS芯片占比超过60%;受智能驾驶、超高清建设、医疗成像等需求推动,用于汽车、安防、医疗市场的CIS芯片增长最为迅猛,预计五年CAGR分别达到30%、20%、23%。
▲2018-2023年CIS下游应用市场增长预测
硬件上的进步无疑推动了手机光学的发展,而技术上的革新也是一个不可忽视的因素。技术进步首当其冲的是背照式兴起,使得拍照效果显著增强。传统前照式(FSI)结构中,滤镜与光电二极管存在金属连线,降低了进入传感器的光线,吸收效率不到80%,拍照效果较差。
为了提升拍照质量,2008年6月索尼宣布了背照式CMOS传感器,即将金属连线转移到光电二极管后面,光线可以直接进入光电二极管,大大降低了光线损耗,夜拍效果也随之增强。
▲BSI与FSI示意图
另外,堆栈式结构也在技术升级中大放异彩。传统的前照式/背照式CIS中,像素和处理电路处于同一层,而堆栈式CIS将两个区域分离开来,将处理电路堆叠到像素区域下面,可按不同制程工艺制造像素和处理电路区域的同时,也极大地节省了空间。目前高端机CIS通常采用堆栈式结构,减少芯片尺寸的同时像素层面积占比提升至90%,成像质量得到极大的优化。
▲普通背照式与堆叠式CMOS影像传感器结构示意图
近年来,手机光学中的一个很重要的创新是3D Sensing。3D Sensing是以多摄为基础的功能化升级,深度图像识别将赋予终端人脸识别和手势识别的能力,是未来智能手机应用拓展的功能基础,因此也是光学领域最具机会的方向之一。2017年苹果iPhone X率先大规模将3D Sensing技术应用到消费电子终端上,随后小米、OPPO、华为、三星等品牌陆续也将该项技术应用至其核心产品中。这项技术首先在前置摄像头中开始应用,随后在近两年内开始逐渐出被应用到后置摄像头中。
3D Sensing主要有双目立体成像、结构光和飞行时间技术(ToF),其中结构光和ToF两种比较成熟的方案,应用场景丰富,需求有望增加。
3D 结构光是基于激光散斑原理,结构光原理为通过近红外激光器向物体投射具有一定结构特征的光线,再由专门的红外摄像头进行采集获取物体的三维结构,再通过运算对信息进行深入处理成像。3D结构光具有成像精度较高、反应速度快与成本适中的特点,但其识别距离有限(有效范围1米以内),主要用于近距离3D人脸识别,实现手机面部解锁、智能支付等功能。
时间飞行法(TOF)利用反射时间差原理,通过向目标发射连续的特定波长的红外光线脉冲,再由特定传感器接收待测物体传回的光信号,计算光线往返的飞行时间或相位差,从而获取目标物体的深度信息。TOF方案具备抗干扰性强,刷新率较快,能够覆盖中远距离,可广泛应用在手势追踪、手机后置辅助相机等。
▲各品牌旗舰新机前置/后置摄像头
ToF具体可以细分为间接测量飞行时间(iToF,indirect Time of Flight)和直接测量飞行时间(dToF,direct Time of Flight)。大部分的iToF采用测相位偏移的方法,即发射的正弦波与接收的正弦波之间的相位差,由于基于正向偏压的光电二极管以及其测量电路的时间分辨率比较低,为了避免各种因素的干扰才采用测量相位偏移的方法来达到低于硬件系统时间分辨率的效果。iTof方案相对成熟,目前安卓系普遍采用iToF。
dTof顾名思义直接测量光子飞行时间,但由于能达到ps级分辨率的测量系统成熟较慢,dToF方案难度更大,目前仅苹果应用。dToF方案功耗更低、成像速度更快、精度更高,有望在未来成为主流方案。
根据Statista数据显示,2017年3D Sensing市场空间为2.1亿美金,而到2023年市场空间增长到18.5亿美金,年复增长率超37.7%,市场空间广阔。Statista预测至2023年消费电子将会是3D Sensing最大的应用市场,占总市场份额约75%;自动驾驶和工业是消费电子行业外,另两大3D Sensing应用领域,分别占近13%和9%市场份额。
▲3D Sensing技术应用领域分布(亿美元)
3D Sensing核心技术掌握在海外企业,中国企业主要供给低价值量和简单工艺的接收端产品。3D Sensing分为发射端和接收端,接收端的技术难度和产品难度相对较低;而发射端因其技术难度高,价值量较大。现阶段VCSEL设计技术仍掌握在以Lumentum为代表的海外公司手里,但大陆企业在准直镜头、窄带滤光片、模组环节拥有深厚的技术储备。随着市场的发展,国内厂商技术成熟,国内供应商市占率有望进一步提升。
手机光学的另一大创新是潜望式摄像头,变焦技术分为光学变焦和数码变焦两种,光学变焦通过移动镜头内部镜片组改变镜头焦距,镜头焦距越长,变焦倍数越高;受制于机身厚度,手机长焦镜头的长度有限,不能完成高倍数的变焦拍摄,因此提升变焦倍数就需要潜望式镜头来实现。潜望式摄像头是指将镜头与手机平面垂直放置的摄像头,需要增加镜片数量、棱镜,同时加入马达,实现镜头内部透镜的可移动,以此大幅增加摄像头的焦距,实现高变焦拍摄功能,进一步升级手机拍摄性能。
安卓主要手机厂商已搭载潜望式摄像头方案实现高倍率变焦。带潜望式功能的摄像模组由潜望式长焦镜头+常规短焦镜头(广角、超广角、主摄等)组成,其他常规镜头与长焦镜头配合,完成接力式变焦。目前OPPO、vivo、华为、三星、小米均有各自方案,但具体的摄像头参数和变焦倍数各不相同。
根据IHS数据,2018年光学式指纹识别模组的出货量预计将超过9000万颗;2019年继续保持高速增长,出货量超过1.75亿颗;2021年预计将超过2.8亿颗,2018-2021年复合增长率达20%。
二、汽车自动驾驶化,光学行业新舞台
自动驾驶是一种通过摄像机、激光雷达或毫米波雷达等车载传感器来感知周围行车环境,并由计算系统依据所获取的信息进行自动化决策和路径规划,实现车辆智能控制的技术。
自动驾驶系统的引入能够有效降低人为因素造成的交通事故,密歇根大学交通研究所曾分析了2013-2017年370万辆汽车的行驶状况,发现L1和L2级别的自动驾驶系统可显著降低交通事故的发生概率。因此从安全性的角度出发,自动驾驶系统有望成为未来汽车的标配。
在自动驾驶的技术体系中,ADAS技术是车辆实现路况感知、路径规划和自动控制的关键技术之一。而在ADAS技术中,负责视觉感应的传感器摄像头是核心之一。视觉感知的核心是车载摄像头,其原理是由镜头采集图像后,摄像头内的感光组件电路和控制组件对图像进行处理并转化成电脑能处理的数字信号,从而实现感知车辆周边的路况情况。摄像头主要应用在360全景影像、前向碰撞预警、车道偏移报警和行人检测等ADAS功能中。
当前我国ADAS车载摄像头的渗透率很低,随着汽车ADAS的升级,单车搭载的摄像头数量逐渐提升。主要是因为汽车摄像头应用领域增多,从传统的倒车雷达影像、前置行车记录仪慢慢延伸到车道识别、行人识别、信号灯识别应用领域,汽车搭载的摄像头和传感器数量也在大幅增加。
根据汽车电子大厂NXP的数据,L2+级别以上的自动驾驶至少需要6颗摄像头,相较L1级别的1-2颗摄像头,摄像头有翻倍的增长。如特斯拉Model3搭载8颗摄像头,蔚来近期发布的ET7更是搭载11颗摄像头。Yole的数据显示,全球汽车平均搭载摄像头数量将从2016年的0.99颗增长至2023年的2.99颗,年复合增长率为17.11%。
随着自动驾驶级别从L0到L2-L3的逐步跨越,对环境感知要求的也在不断增加。为了控制车大灯和太阳等强光干扰引起的鬼影杂光,车载镜头厂商正在积极通过光学设计仿真、镀膜工艺、结构设计优化等方式,不断推进镜头产品整体产品的技术进步,使得产品具备防尘防水、抗震和弱光夜视等功能。
从硬件参数来看,弱光、强光等各种光线环境下对成像能力有特殊要求,所以一般使用像素较大且具备超高动态范围(120dB+)的CIS。光线问题一直是一个难以解决的痛点。
另外,为了满足辅助驾驶时对采集有效、稳定的数据所必须的视野范围和覆盖距离等的特殊要求,车载镜头一般满足广角、高相对强度、高通光等特性;同时车载摄像头的像素数也有提高的趋势,2021年主要是ADAS车载镜头像素从100万升级到200万,2023年会生产800万像素,目前一些新能源汽车厂商更注重用户体验,直接将镜头像素升级到800万像素。根据蔚来公布的数据,相比1.2MP摄像头,8MP的摄像头的感知距离可以扩大3倍。同时CIS的滤光片也从常规的RGGB拜耳阵列升级成RCCB阵列,以提高弱光下的性能表现。
因此,随着ADAS Level提升,镜头作为车载摄像头的核心元件,自身性能要求也更高,总结下来其品质可由焦距、光圈、畸变、分辨率等光学指标和温飘、防水、抗震等环境信赖等指标进行衡量。镜头企业的核心竞争力在于光学设计、精密加工、信赖测视和体系保证能力。高要求决定了该行业较高的技术壁垒和较长的供应认证时间,车载摄像头市场未来料将呈现量价齐升的趋势,车载镜头未来将是一片蓝海。
据旭日大数据的数据显示,2019年全球车载摄像头的出货量约为2.5亿颗,全球车载摄像头的市场规模约112亿美元。其中镜头价值占比约19%,因此推测出2019年全球镜头市场规模 137.56亿元。2019年全球汽车销量为9179万辆,Yole数据显示2019年平均每辆汽车搭载2个摄像头,推算得出单个镜头价值约为74.93元。随着智能驾驶的发展,每辆汽车最多可以搭载14-15个摄像头,如果未来平均每辆汽车搭载6-7颗摄像头,平均镜头单价按照75元计算,全球每年汽车销量8800-9500万辆左右,则全球汽车镜头规模约396亿元-427.5亿元。
Yole数据显示,2019年全球汽车CIS市场规模约13亿美金,占总市场的7%左右,全球汽车销量为9179万辆,平均每辆汽车搭载2个摄像头,折算下来单个CIS价格为7美元左右。随着智能驾驶的发展,每辆汽车最多可以搭载14-15个摄像头,如果未来平均每辆汽车搭载6-7颗摄像头,平均CIS单价按照10美金计算,单车价值量大约60-70美金,全球每年汽车销量8800-9500万辆左右,则全球汽车CIS市场规模将达到53-67亿美金,约合人民币342-433亿元。
三、VR/AR光学迈入快速发展期
早期VR/AR设备由于芯片算力不够至流畅度不足、屏幕清晰度不够、硬件笨重等原因至用户佩戴时体验感较差。近些年,随着硬件不断升级,产品设计更加轻便化,VR/AR设备向着轻便、舒适的方向发展,体验感提升的同时价格也逐步下沉。此外,供应链也不断完善,国内涌现了一批优质的光学和整机组装等领域优质厂商。
2015年VR/AR产品一度成为消费电子行业热点,但在2017年市场陷入沉寂。分析近年来VR/AR热度下降的核心原因:受限于4G网络带宽不足,数据传输效率低于VR/AR产品需求,场景画面分辨率低、颗粒感严重、渲染效果不佳,用户长时间使用会产生眩晕感。
高品质的VR/AR应用对网络环境要求极高,5G网速最高可达10Gbit/s,是4G网络的100倍,5G的大带宽、低延时,将为VR/AR行业解决因带宽和延时导致渲染能力不足、互通体验感差等痛点提供关键技术。此外,5G网络传输速率高,有助于VR/AR设备实现数据云端计算和储存。不仅节省设备制造成本,也将推动设备向无线化、轻量化发展。
根据高盛发布的《VR与AR:解读下一个通用计算平台》报告,高盛认为VR/AR技术将在视频游戏、事件直播、视频娱乐、医疗保健、房地产、零售、教育、工程和军事9大行业得以应用,并预测2025年将增长到330亿市场规模,其中视频游戏占据50%以上市场。
▲视频游戏、事件直播、视频娱乐将成为VR/AR产品主要市场
随着VR/AR硬件设备的升级、5G技术的成熟、应用内容的丰富,VR/AR市场即将迎来新的发展。根据IDC数据,2017~2020年VR/AR头显出货量分别为836万/590万/800万/706万台,并预计全球VR/AR市场有望在2021年恢复成长,2024年出货量有望超7671万部。根据中国信息通信院的数据显示,2018年全球VR/AR市场规模超过1950亿元人民币,预计2022年市场规模超4700亿元。
四、多元化竞争,群雄逐鹿
光学行业的上游主要包括原材料、辅料及加工设备制造业,其中原材料主要包括各类光学玻璃;辅料包括镀膜材料、清洗辅料、研磨材料等;加工设备包括在切割、研磨、抛光、清洗、丝印、镀膜和检测等工序中用到的各种设备。目前上游行业处于充分竞争状态,且原辅材料占比成本相对较低,其价格波动对中、下游公司影响较小。
▲光学产业链
光学行业的中游主要包括镜头厂商及提供镜头零部件如CIS、镜头、马达、红外截止滤光片、模组等厂商。由于光学镜头是机器视觉系统必不可少的部件,直接影响成像质量的优劣,其重要性不言而喻。摄像头模组主要由图像传感器(将光信号转化为电信号)、镜头(收集光线)、音圈马达(对焦)、红外截止滤光片(过滤多余的红外光和紫外光)等组成,根据前瞻产业研究院数据显示,手机摄像头成本中CIS占比高达51%,远超其他组件。
▲摄像头模组成本占比
光学行业下游主要包括手机、车载及监控等领域。由于手机年出货量在13亿左右,远高于汽车和安防产品的出货量,叠加多摄渗透率的提升,手机镜头在下游占比较高。后续随着汽车ADAS渗透率提升推动车载镜头量价齐升,汽车镜头占比有望持续提升。根据中国产业信息网数据显示,近几年手机镜头占比在70%-80%之间,车载镜头占比在9%-15%之间,监控镜头在9%-13%之间。
▲全球镜头下游市场占比
CIS集中度较高,2019年CR3达76%。据TSR统计,2019年全球CIS销售额达到159亿美元,其中索尼占比达48%,掌控近一半市场份额。三星、豪威跟随其后,分别占比21%、7%,CR3达76%,较2018年有所提升,预计到2023年,前三大公司市占率将达到90%以上。而从出货量来看,前瞻产业研究院数据显示,索尼、三星、豪威占比分别为31%、28%、16%,CR3为75%。综合两者数据来看,索尼在高端市场的竞争力十分强劲。
以手机镜头板块为例,根据TSR发布数据,在整个手机镜头行业中,中国台湾地区的大立光是绝对的霸主,占据了35%的全球市场份额,并且主要供应高阶镜头。舜宇光学作为来自大陆的后起之秀,也占据了9%的市场份额,位居市场第二位,并在国产手机供应链中具有重要地位。Top3厂商市占率达到50%以上,行业集中度较高,且大立光与舜宇光学市场份额不断提升,保持在40%以上。各厂商镜头营收占公司总营收比例:大立光99%、晶光电95%、舜宇光学18-22%。从手机镜头的盈利能力来看,大立光的毛利率为70%左右,舜宇光学与玉晶光为40%以上,行业盈利能力强大。
而模组环节技术壁垒相较于CIS与镜头更低,导致厂商数量较多,竞争也更为激烈。据旭日大数据的统计,仅中国大陆地区的模组厂商就多达100多家。但后续随着手机品牌厂商集中度提升,亦有望带动上游模组厂商集中度提升。且随着光学创新不断,模组厂商需要投入更多的资本开支来扩大产能,叠加技术创新形成的技术壁垒,马太效应下有望强者恒强。根据Yole数据显示,2019年欧菲光、舜宇光学的市占率分别皆为13%。此外,根据TSR数据显示,2015年到2018年镜头Top5厂商市场份额从28%增加至2018年的41%,市场集中度有望进一步提升。
▲2019年模组厂商市占率